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We have developed fully resolved, two-dimensional, finite volume simulations of direc-
tional solidification of a binary alloy in a Hele-Shaw cell. Use of Darcy’s law and the
Enthalpy Method throughout the computational domain allows us to avoid prescribing
internal boundary conditions on the interfaces between solid, mushy, and liquid regions.
We present a description of the theoretical model, computational approach, two reduced
benchmark calculations, and simulations of the full governing equations. In simulations
with parameter values that approximate experiments, boundary-layer-mode convection
produces corrugations in the mush–liquid interface. Some of these corrugations become
chimneys that grow and interact within the mushy layer. We consider two porosity–per-
meability relations and examine their consequences for chimney spacing and mushy layer
height. Our results are broadly similar to experiments on directional solidification of NH4Cl
[S.S.L. Peppin, H.E. Huppert, M.G. Worster, Steady-state solidification of aqueous
ammonium chloride, J. Fluid Mech. 599 (2008) 465–476; S.H. Whiteoak, H. Huppert,
M.G. Worster, Conditions for defect-free solidification of aqueous ammonium chloride in
a quasi 2d directional solidification facility, J. Cryst. Growth (2008)]. We describe other
simulations that are tuned to suppress boundary layer mode convection and that, instead,
go unstable by the mushy layer mode [M.G. Worster, Instabilities of the liquid and mushy
regions during solidification of alloys, J. Fluid Mech. 237 (1992) 649–669]. We investigate
the morphological evolution of the mush well beyond the linear instability regime.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Solidification of multi-component melts from a cold boundary generally gives rise to a solid–liquid interface that is unsta-
ble to the growth of crystalline dendrites [30]. The ensemble of dendrites forms a porous, permeable mushy layer [49]. In
general, crystals have a composition different from their parental melt, so solidification leads to changes in solute concen-
tration of the melt in a narrow region around the crystals. Changes in solute concentration correspond to changes in melt
density. In some cases [48], this causes compositional convection to occur within the mushy region. Reactions between mov-
ing melt and the dendritic matrix lead to the formation of chimneys of zero-solid-fraction and to focusing of flow into these
chimneys. This instability is observed in a wide variety of systems from industrial (e.g. casting [17,24]) to natural (e.g. for-
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mation of sea ice [44]). In the casting of turbine blades, chimneys represent defects that weaken the final product; in sea ice,
chimneys allow for enhanced drainage of concentrated brine and hence have important implications for oceanic deep water
formation. A thorough understanding of the dynamics of convection in mushy layers is thus of great interest and wide
applicability.

Laboratory experiments on the solidification of two-component liquids are a primary tool for investigating mushy layer
dynamics. In experiments, the fluid is typically contained in a tank whose top or bottom is cooled to a temperature below the
liquidus. Because the cold boundary is stationary, such experiments are termed ‘‘fixed chill.” Although solutions of NaCl–
water [44], sugar–water [3], and alcohol–water [48], as well as metallic alloys [10], have been used in experiments, aqueous
ammonium chloride is most common. This is because NH4Cl crystallizes over a temperature range easily accessible in the
laboratory and forms dendrites that are similar to those formed from metallic alloys. Chimney formation in fixed chill exper-
iments on NH4Cl has been well studied (e.g. [41,42,13]). Theoretical models of chimney formation, however, have typically
been derived under conditions of directional solidification rather than fixed chill.

Directional solidification refers to a system in which a liquid-filled container is moved through a device that chills it, caus-
ing a freezing front to propagate through the liquid at the same rate as but in the opposite direction to the motion of the
container. An experimental apparatus for directional solidification was recently developed to provide a better correspon-
dence between experiments and mushy layer theory [33]. It consists of a vertical, fluid-filled Hele-Shaw cell that is trans-
lated through two sets of fixed-temperature heat exchangers, one set warm, the other cold. The heat exchangers impose
a vertical temperature gradient in the fluid. Solidification progresses from the cold end toward the warm end and, eventually,
an equilibrium mushy layer height is reached [34,45]. Fig. 1 shows an image of light transmitted through the mushy layer of
an experiment that has reached an approximately steady mushy layer height. Darker regions correspond to lower porosity,
chimneys appear as lighter, vertical bands.

Profiles of steady-state temperature, porosity and concentration have been predicted theoretically for the case of direc-
tional solidification with no fluid motion [21,19]. Worster [47] studied the linear instability of this basic state with simple
constitutive equations for permeability. This work demonstrated the existence of two modes of convective instability. At
longer wavelengths, convective cells penetrate to the bottom of the mushy layer, while at shorter wavelengths, convection
is mainly confined to the liquid region. The long-wavelength mushy layer mode seems the obvious candidate to explain the
formation of chimneys, however neither experiments nor stability analysis confirm this conclusively. To model the evolution
of convection and the development of chimneys requires an analysis that captures all the nonlinearities in the governing
equations.

Past models that incorporate nonlinearities have typically been used to look for steady-state solutions with prescribed
chimney locations (e.g. [36,29,16]). While interesting, such models cannot elucidate the path to chimney formation, nor
can they investigate the dynamical interactions between chimneys. These goals require a time-dependent solution to the
governing equations. Owing to the complexity of the full equations, such a solution can only be obtained numerically. While
numerical simulations are more difficult to interpret than analytical solutions, they offer several advantages. Among these
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Fig. 1. An example of directional solidification of NH4Cl in the laboratory. This image was acquired when the mushy layer had reached a constant height
above the bottom heat exchanger, about 220 min after the start of the experiment. The Hele-Shaw cell is illuminated from behind. The initial concentration
is 25 wt% NH4Cl, the translation rate of the cell is 1 lm/s downward, and the temperature at the top and bottom heat exchangers is 20 and �28 �C,
respectively. Three chimneys are clearly visible on the near side of the cell and several others are obscured because they are adjacent to the far side. A plume
of chemically buoyant fluid rises out of each chimney although, because of the lighting, these are not visible here (see images in [34,45]).
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are (i) the ability to study both the onset of instability and the dynamics of fully developed convection, (ii) the ability to gen-
erate time-dependent patterns of porosity and flow and (iii) the ability to test different, nonlinear constitutive laws for per-
meability. Below we illustrate these three points using new results obtained from our simulations.

The development of a useful numerical simulation of mushy layer dynamics has been a challenge for two important rea-
sons. The first of these stems from the typical approach of splitting the computational domain into subdomains for the solid,
mushy and liquid regions in which different equations are solved. In such simulations, boundary conditions must be spec-
ified between subdomains and, of particular importance, on the mush–liquid interface. A split-domain approach was taken
by Schulze and Worster [36,37] and by Chung and Worster [16]. The latter solved for steady-state convection and self-con-
sistently determined the position of the mush–liquid interface. In their simulation, however, chimney spacing was specified
a priori and chimneys were not allowed to interact or evolve. To circumvent this limitation, other workers have formulated
the problem with a single domain approach where the local properties depend on a phase-field variable [32,9,11,22]. We
have adopted such an approach and hence we solve the same equations over the entire domain. We do not prescribe any
aspect of the mushy layer structure.

A second impediment on the development of useful numerical simulations of convection in mushy layers stems from the
ascent rate of buoyant plumes in the open liquid region. Plumes emanating from the mushy layer or its compositional
boundary layer are highly buoyant. These plumes ascend very rapidly if conservation of momentum in the open liquid region
is modeled with the Navier–Stokes equation (or with the Darcy–Brinkman equation [28]). Since the simulation time-step is
limited by the largest velocity within the domain, high ascent rates can lead to time-steps that are minuscule compared to
the timescale of evolution of the mushy layer. This makes it prohibitively expensive to integrate the equations over a dimen-
sional time interval that is comparable to that of experiments. Since recent experiments have been performed within a nar-
row gap between glass plates, a Hele-Shaw cell, it is reasonable to assume that conservation of momentum is described by
Darcy’s law throughout the domain. This provides a control on the ascent rate of plumes in the liquid region by adjusting the
gap width of the Hele-Shaw cell and hence the permeability at zero solid fraction. While the experimental cell has a gap
width of 5 mm, the diameter of typical plumes in experiments is smaller than this. Hence our use of Darcy’s law, while con-
venient, is not entirely justified in the context of those experiments. We examine the validity of this choice in Section 5.

In Section 2, we describe the mathematical formulation of the model and give an overview of its numerical implemen-
tation. In Section 3, we consider two benchmark cases that validate the thermodynamics and fluid dynamics modeled by
our code. In Section 4, we describe representative results of simulations of two types. The first type is calibrated to mimic
experiments while the second type is calibrated to demonstrate the mushy layer mode of instability. Section 5 contains a
discussion of the results, conclusions and a projection of future work with the model. We have also included appendices that
detail the nondimensionalization and discretization of the differential equations.

2. The model

Our model describes conservation of mass, momentum, energy and species concentration for a two-component, fluid–so-
lid system undergoing directional solidification. The model is two-dimensional and the equations are written in terms of vol-
ume-averaged quantities [27,50]. We assume that the fluid–solid system is contained within a Hele-Shaw cell and, hence,
that conservation of momentum can be expressed within the mushy region and the open fluid region with Darcy’s law. In
the pure solid region a fluid flux of zero is prescribed. Furthermore, as is usual for theoretical studies of mushy layers, we
assume local (i.e. within each averaging volume) thermodynamic equilibrium everywhere over the domain [49]. With this
assumption the local temperature, solid fraction and phase compositions are entirely determined by the local enthalpy, bulk
composition and a statement of the binary phase diagram. This thermodynamical modeling approach is termed the Enthalpy
Method and has been used in fluid dynamics problems with phase changes [2,38,8]. Within the Enthalpy Method, the equa-
tions describing conservation of energy and conservation of bulk composition apply over the whole domain.

The domain, shown in Fig. 2 has a height h and a Hele-Shaw gap-width d. The height is defined, in accord with experi-
ments, as the distance between heat exchangers that impose the top and bottom temperature, Tcold and Twarm, respectively,
and that are fixed in the laboratory reference frame. A uniform, constant downward velocity V transports solid and liquid
through the computational domain and represents the translation of the Hele-Shaw cell through the heat exchangers in
experiments [33]. The simulation is initiated with temperature T i and concentration Ci within the interior of the domain.
Tcold is typically below the eutectic temperature of the solution and hence solidification begins at the bottom boundary
and progresses upward. We choose an initial concentration Ci that is on the NH4Cl side of the eutectic, thus the mushy layer
is composed of solid NH4Cl crystals and a residual liquid that is fresher and less dense as a result of solidification. Variations
in density enter the governing equations only in the buoyancy terms. Elsewhere, we assume that the fluid and solid densities
are identical and constant. The effect of a density difference between fluid and solid has been previously considered and
shown to have negligible effect on the dynamics [14,15]. The dimensional values of all parameters used in this model are
given in Table 2.

Boundary conditions are chosen to be consistent with directional solidification experiments [33,34] and are shown in
Fig. 2. The computational domain has impermeable side and bottom boundaries and a permeable top boundary. The latter
allows chemically buoyant plumes to escape instead of polluting the interior of the domain. The top boundary is also no-slip
(i.e. no tangential velocity), which is artificial with respect to experiments but useful because it helps to reduce lateral flow



Fig. 2. A schematic diagram of the computational domain with boundary conditions. The temperature and porosity are fixed at the top and bottom of the
domain by calculating their corresponding value of H using Eq. (1). On the top boundary, the direction of fluid flow determines the set of boundary
conditions that are applied. The side boundaries are impermeable; reflection conditions on H and C enforce zero diffusion across them. A reflection
condition on the vertical flux at the side boundaries is appropriate because Darcy flow need not satisfy a no-slip condition.

9826 R.F. Katz, M.G. Worster / Journal of Computational Physics 227 (2008) 9823–9840
within the liquid region. Fixed temperatures are imposed at the top and bottom. The sides are thermally insulating. Along the
top boundary, grid cells where fluid is flowing out of the domain use a reflection boundary condition on bulk composition;
where fluid flows into the domain it does so with prescribed bulk composition.

The primary unknowns in the simulation are bulk enthalpy H bulk solute concentration C and the two-dimensional Darcy
flux U. Other variables (temperature, porosity, phase concentrations and permeability) are determined from the main vari-
ables using constitutive laws. Below we detail the partial differential equations and constitutive laws that govern the system
and give an overview of our implementation of the numerical solution of these equations. The equations are solved in terms
of nondimensional variables; Appendix A presents our choice of scales and resulting nondimensional equations.

2.1. Conservation of energy

The enthalpy (J m�3) of a fixed volume of fluid and solid with porosity v is given by
H ¼ H0 þ vqLþ vqcp;lðT � TeÞ þ ð1� vÞqcp;sðT � TeÞ; ð1Þ
where H0 represents the reference enthalpy of the solid at the eutectic temperature Te, q is the density, L is the latent heat
per kilogram of liquid and cp;s (cp;l) is the specific heat of the solid (liquid). In what follows we take the reference enthalpy to
be zero.

Energy is transported by translation of the containing cell, fluid advection, diffusion through the solid and the fluid, and
diffusion out of the Hele-Shaw cell through its walls. The latter effect has been previously characterized [33] for the exper-
imental apparatus used in Fig. 1. We adopt their parametrization and write conservation of energy as
DVH
Dt
þ U � rHl ¼ r � ½vkl þ ð1� vÞks�rT � bðT � T1Þ; ð2Þ
where U is the Darcy flux, equal to the porosity times the volume averaged microscopic velocity [27], kl and ks are the ther-
mal diffusivity in the liquid and solid, T1 is the ambient temperature surrounding the modeled Hele-Shaw cell and b is an
empirically determined parameter that quantifies the efficiency of thermal transfer with the ambient air [33]. The Lagrang-
ian derivative is defined as
DV

Dt
¼ o

ot
þ V

o

oz
; ð3Þ
which accounts for transport due to the translation of the Hele-Shaw cell through the domain with velocity V.

2.2. Conservation of solute

The solute, NH4Cl, is transported through the domain by translation of the containing cell, advection by the liquid and
diffusion through the liquid. We can write the conservation of solute as
DVC
Dt
þ U � rCl ¼ r � vDlrCl; ð4Þ
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where C is the bulk concentration (kg m�3), Cl is the liquid concentration and Dl is the solute diffusivity in the liquid. The
bulk concentration is defined as
Fig. 3.
from pu
interfac
C ¼ vCl þ ð1� vÞCs: ð5Þ
2.3. Conservation of mass and momentum

Since the solid does not deform and we make the Boussinesq approximation, conservation of mass is written
r � U ¼ 0: ð6Þ
As described above, we use Darcy’s law throughout the domain to enforce conservation of momentum
rp ¼ qg½aðT � TeÞ þ bðC � CeÞ�k�
g
P

U: ð7Þ
Here, p is the dynamic fluid pressure, g is the acceleration of gravity, a and b are the thermal and solutal expansivities (b < 0),
Te and Ce are the eutectic temperature and concentration, g is the fluid viscosity and P is the permeability. The Darcy flux, U,
is taken in a frame moving with the translating Hele-Shaw cell. Taking the curl of Eq. (7) and rearranging gives
qg
g

a
oT
ox
þ b

oC
ox

� �
¼ r� U

P
: ð8Þ
2.4. Constitutive equations

While the principle variables, H, C and U, are constrained by the governing PDEs, constitutive laws are used to relate the
values of these variables to other properties of the system.

2.4.1. The Enthalpy Method
Because we have assumed that the system is in local thermodynamic equilibrium everywhere in the domain, we can

determine the local temperature, phase fraction and solute concentration in each phase from local values of the enthalpy
and bulk composition [2,8,38]. To do so, however, requires a statement of the phase diagram in temperature–composition
space. We follow previous authors in prescribing a phase diagram with a eutectic, a linear liquidus TLðClÞ and a constant par-
tition coefficient pc ¼ Cs=Cl describing the distribution of solute between the phases, as shown in Fig. 3. The liquidus is given
by
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TLðClÞ ¼ Te þ CðCl � CeÞ; ð9Þ
where C is the slope of the liquidus. The solidus is given in terms of the solid concentration as
TSðCsÞ ¼max Te; Te þ
C
pc
ðCs � pcCeÞ

� �
: ð10Þ
To calculate the thermo-chemical state at a grid-cell, we first need to determine the region of the phase diagram correspond-
ing to local values of H and C. Using information from the phase diagram and Eq. (1) we can determine, for given C, (a) the
energy HS at which the cell reaches the eutectic from below but is entirely solid, (b) the energy HE at which it leaves the
eutectic for the liquidus and (c) the energy HL at which it leaves the liquidus and is entirely molten. HS, HE, and HL are deter-
mined using Eq. (1) with ðv; TÞ equal to ð0; TSðCÞÞ, ðvE; TeÞ, and ð1; TLðCÞÞ, respectively. The porosity vE is calculated using Eq.
(5) with Cl ¼ Ce and using the definition of the partition coefficient as
vE ¼
C � pcCe

Ce � pcCe
: ð11Þ
For an enthalpy below the solidus (H 6 HS) the local system is entirely solid so v ¼ 0, T ¼ H=ðqcp;sÞ, Cs ¼ C and Cl is arbitrary
but taken as equal to Ce. Similarly, when the local enthalpy is above the liquidus, (H P HL), v ¼ 1, T ¼ ðH � qLÞ=ðqcp;lÞ, Cl ¼ C
and Cs is arbitrary but taken as pcC. There are two other, more complicated cases: the local system is at the eutectic when
HS < H 6 HE, or the local system is on the liquidus for HE < H < HL. The means for calculating porosity, temperature and
phase compositions for these two cases are summarized, in nondimensional form, in Table A.2.

2.4.2. Permeability
Permeability is typically modeled as varying with porosity from zero at v ¼ 0 to infinity at v ¼ 1. In a Hele-Shaw cell the

permeability of the system is limited by the permeability of the cell itself, d2
=12 [7]. To impose this limit we adopt a dimen-

sional permeability of the form
PðvÞ ¼ 12

d2 þ
1

Pv

� ��1

; ð12Þ
where Pv is a function that parametrizes the variation of permeability with porosity. The total permeability is thus the har-
monic mean of the cell permeability and the mush permeability. This mean is roughly equivalent to taking the minimum of
the two arguments but has the advantage of being continuous and differentiable.

The canonical choice for Pv is the Kozeny–Carmen relationship,
Pv ¼
P0v3

ð1� vÞ2
; ð13Þ
where P0 is a factor related to the mean pore diameter [7]. As shown in Fig. 4, this function varies significantly over a range
of porosities near v ¼ 1. An alternative form representing flow along parallel cylinders, with a smaller variation in perme-
ability near v ¼ 1, was adopted by Tait and Jaupart [20,42]. We have simplified their relation slightly but retain the logarith-
mic singularity at v ¼ 1
Pv ¼ �P0v2 lnð1� vÞ: ð14Þ
As shown in Fig. 4, this function behaves as v3 for porosity approaching zero, similar to Kozeny–Carmen.

2.5. Implementation of numerical solution

The nondimensional governing equations are discretized on a staggered Cartesian mesh using a finite volume approach
and uniform grid spacing. Fluid fluxes are evaluated on the borders between grid cells while other variables are evaluated at
cell centers [23] making the discrete equations flux-conservative. Diffusion terms are discretized with standard second-order
finite difference stencils. Time is discretized using a Crank–Nicolson scheme (i.e. semi-implicit; the values of terms in Eqs.
(A.1) and (A.2) are calculated using the mean of the fields at the current and next step) for second-order accuracy. Lagrangian
time derivatives are discretized by the semi-Lagrangian advection method [40,39]. The time-step size is determined accord-
ing to a Courant–Friedrichs–Lewy (CFL) condition on the maximum velocity at the previous time-step. All Enthalpy Method
variables are updated simultaneously with the enthalpy and bulk composition. The discrete equations are presented in
Appendix B.

For accelerated solver convergence and efficiency, we divide the set of discrete equations in two, beginning each time-
step by solving for a predicted enthalpy and bulk composition at discrete time nþ 1 using Eqs. (A.1) and (A.2) and taking
values of the flux from the solution at time n. This prediction is then used to solve for the flux at nþ 1 with Eqs. (A.3)
and (A.4). We iterate this sequence, updating the enthalpy and bulk composition at time nþ 1 using the mean of the flux
averaged between times n and nþ 1, then updating the flux at nþ 1 using the newly calculated thermodynamic fields. Each
iteration of this sequence improves the accuracy of the solution. In practice we find that for a CFL number of around unity, a
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single iteration is sufficient to achieve a accuracy for the entire system of equations that is consistent with the accuracy of
each of the two iterated solution blocks.

Eqs. (A.1) and (A.2) have nonlinearities arising from the Enthalpy Method and from the nonconstant diffusivity. Even with
the flux U fixed, the corresponding discrete equations require the use of a nonlinear solver. The discrete equations corre-
sponding to (A.3) and (A.4), on the other hand, are linear for fixed permeability. Although we fix the permeability while
we update the flux, for convenience and consistency we adopt the same solution strategy as for the update of enthalpy
and composition (see below). Special care must be taken when the discrete momentum equation is evaluated on a patch
of grid where the permeability is zero—see Appendix B for details.

The two discrete solutions are determined using a Newton–Krylov–Schwartz method [12] that is provided by the Portable
Extensible Toolkit for Scientific Computation (PETSc) [5,4]. This method is suited for sparse sets of coupled, nonlinear equa-
tions in N dimensions on a domain that is decomposed into regions with boundaries in N � 1 dimensions. The method begins
with an initial guess ~x that is iteratively updated with a correction dx, determined by solving the linear system Jdx ¼ r, where
r is a vector representing the residuals of the discrete equations and J is the Jacobian matrix given by ori=o~xj (Jacobian-free
variants of this method are also possible, e.g. [25]). The solution to this linear system is preconditioned with an Incomplete
LU (ILU) factorization and solved using the Generalized Minimum Residual (GMRES) method [35,18]. Newton iteration con-
tinues until the norm of the residual vector is below a user-specified tolerance. For mushy layer simulations we set this tol-
erance to 10�7 or less.

PETSc provides a variety of solver methods with a unified, relatively simple interface; for each set of nonlinear equations
to be solved, the user must create a subroutine for calculating the discrete residual at each grid point [23]. The Jacobian can
be generated automatically by PETSc using finite differences or specified via a user-provided subroutine (we opt for the for-
mer). Furthermore, PETSc’s data structures and methods are inherently parallel and scalable [6,23]; our mushy layer simu-
lations are typically run on 4–6 processors.

3. Validation

Validation of the code requires a demonstration that the numerical solution is an accurate representation of the exact
solution at an achievable grid resolution and that the numerical solutions converges to the exact solution with increasing
grid resolution. As usual, there is no exact solution for the full problem that is being simulated. There are, however, two test
cases that provide acceptable benchmarks for the two core components of the code. The first is an analytic solution for the
steady-state profile of a mushy layer under directional solidification with no fluid flow [21,19,46]. Comparison of this solu-
tion with numerical results for prescribed zero fluid flux validates our implementation of the Enthalpy Method. The second
benchmark involves comparison with a consensus of previous numerical simulations [28]. These simulations model steady-
state convection in a 2D box containing a fixed porous medium of unit permeability with fixed temperature on the left and
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right walls and zero heat flux on the top and bottom. Comparison of these consensus results with our own results for the
same model validates our numerical treatment of Darcy’s equation and advection and diffusion of heat.

There are important components of our simulations that are not validated by these two tests, including our treatment of
the advection of solute and our success in modeling flow through a porous medium that has orders of magnitude spatial
variation in permeability. Qualitative comparison of results (see below) with experiments [34] and other models [36,16],
in addition to past work on different simulations with similar discretization [1,23], gives confidence that our numerical
implementation of the model achieves reasonable accuracy, overall.

3.1. Solidification without fluid flow

Worster [46] summarizes the analytical solution for mushy layer height and porosity as well as temperature and liquid
solute concentration [21,19]. The domain is a 1D profile through a semi-infinite half space with an imposed directional solid-
ification rate V. The eutectic temperature is imposed at z ¼ 0 and the far-field temperature and concentration are specified.
There is no fluid motion and the heat capacities and thermal conductivities are taken as equal in the liquid and solid. See [46]
for further details.

The numerical simulations are based on a reduced model given in nondimensional terms by
Fig. 5.
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DVH=Dt ¼ Le�1
ozvozHl: ð16Þ
H, H and h are the nondimensional enthalpy, bulk concentration and temperature, respectively, and Le is the Lewis number.
Details of the nondimensionalization are given in Appendix A. Parameter values are assigned to be compatible with the ana-
lytical solution (e.g. kl ¼ ks, cp;l ¼ cp;s).

Fig. 5 shows a comparison between profiles obtained from the numerical solution and from analysis (the curves are
indistinguishable).

3.2. Convection in a fixed porous medium

Buoyancy-driven fluid flow is the second key component of our simulations. To benchmark our ability to accurately mod-
el flow and advection of heat we simulate convection in a fixed, uniform permeable medium with no phase change. The do-
main is a unit square with imposed temperature on the left (warm) and right (cool) boundaries and no heat flux through the
top and bottom. For consistency with previous work, we include a viscous dissipation term in the momentum equation and
require that fluid on the boundaries has zero velocity. The thermal Rayleigh number and Darcy number are the only dimen-
sionless parameters. The details of this benchmark have been previously discussed [28,26,31].
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Table 1
A comparison of the mean Nusselt number at different values of the Rayleigh and Darcy numbers

Da RaT This study Ref. [28] Ref. [26] Ref. [31]

10�6 107 1.08 1.08 1.07 1.08
108 3.10 3.08 3.06 3.00
109 13.4 13.2 13.2 12.3

10�4 105 1.07 1.07 1.06 –
106 2.86 2.85 2.84 –
107 10.3 10.3 10.3 –

10�2 103 1.02 1.02 1.02 1.02
104 1.71 1.71 1.70 1.71
105 4.33 4.26 4.26 4.26

Within the domain the permeability, porosity, fluid concentration, thermal conductivity and specific heat are all unity. The simulations were performed on a
uniform mesh with 242 � 242 cells.
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We run the simulation until a steady-state is reached, defined as
Table 2
Propert

Parame

g
kl

ks

cp;l

cp;s

q
L
a
b
Te

Ce

C
ps

b

The dis
maxðj hnþ1 � hn jÞ=Dtn < 10�3; ð17Þ
where n indexes successive time-steps and Dtn is the length of the time-step. We then calculate the Nusselt number, oh=ox,
averaged over the left and right boundaries. A comparison with results from previous studies is given in Table 1 and the
agreement signifies valid implementation of the conservation of mass, momentum and thermal energy equations.

4. Simulations of directional solidification

We now consider solutions of the full governing equations. In Section 4.1, we report on an ensemble of simulations with
parameter values that match directional solidification experiments on aqueous ammonium chloride (including the Hele-
Shaw gap width of 5 mm) [34]. The domain is 6 cm in height, as in experiments, but has a width that is one half the
12 cm width of the experimental apparatus. We vary the magnitude and functional form of the permeability over the ensem-
ble and study the consequences. In Section 4.2, we consider a simulation that uses parameters modified from their natural
values to suppress the boundary layer mode of instability. In this case we force the mushy layer to go unstable by the mushy
layer mode as described in Ref. [47].

4.1. Solidification of aqueous NH4Cl

The relationship between permeability and porosity in crystalline mushy layers grown from standard materials is not
well known; other parameters have been accurately measured and reported in the literature. We performed an ensemble
of simulations in which we varied the permeability law (between Eqs. (13) and (14)) and the permeability constant P0.
Parameters Ci, V, Twarm and Tcold are as for the experiment shown in Fig. 1 (and also for V ¼ 3 lm/s). Other parameters cor-
responding to solidification of NH4Cl from an aqueous solution are given in Table 2.

For a given permeability function, changing the constant P0 affects the thickness of the mushy layer as a function of time
(Fig. 7), as well as the number and type of perturbations to the mush–liquid interface. In simulations with small values of P0
ies of the NH4Cl–water system (on the side of the eutectic where NH4Cl is the crystallizing phase) and of the directional solidification apparatus

ter Value Units Comment

1:4� 10�3 Pa s Viscosity at 20 �C
0.54 W m�1 K�1 Liquid heat conductivity
2.2 W m�1 K�1 Solid heat conductivity
3:5� 103 J kg�1 K�1 Liquid specific heat
1:5� 103 J kg�1 K�1 Solid specific heat
1050 kg m�3 Density of the liquid
2:76� 105 J kg�1 Latent heat of dissolution
2:1� 10�4 K�1 Thermal expansivity
�0.30 (wt. frac.)�1 Solutal expansivity
�16 �C Eutectic temperature with water
0.8 wt. frac. Water concentration at eutectic
471.4 �C (wt. frac.)�1 Liquidus slope
10�5 Water distribution coefficient
1600 J m�3 s�1 �C�1 Hele-Shaw cell cooling coefficient [33]

tribution coefficient, ps, that describes the water content of solid NH4Cl is taken as nonzero for stability of the numerical method.
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and hence low permeability (less than about 5� 10�14 for Kozeny–Carmen, 10�10 for logarithmic permeability), convection
occurs in the boundary layer mode [47] and corrugations form on the mush–liquid interface but do not grow into chimneys.
Individual corrugations are transient; together they produce a small decrease in the thickness of the mushy layer, which
reaches steady-state in about 90 min of simulated time.

For larger values of P0, boundary-layer-mode corrugations on the mush–liquid interface activate convection in the mush
below. Fresh fluid upwells through the mushy layer and is vented from a subset of the corrugations. Reactions between the
upwelling fluid and the porous matrix lead to dissolution of mush beneath the corrugations and to their downward exten-
sion to form chimneys. Fig. 6 shows a time series of permeability maps from a simulation that developed chimneys; in this
case, the Kozeny–Carmen relation (13) was used to calculate permeability with P0 ¼ 10�12. The presence of chimneys re-
duces the thickness of the mushy layer relative to chimney-free cases; the number of chimneys evolves with time (and with
mushy layer thickness). Chimney spacing for the ensemble of simulations is discussed below and shown in Fig. 8.

In cases where chimneys occur, the onset of convection in the mushy layer and hence growth of corrugations into chim-
neys typically occurs within the first few minutes of simulated time. Moreover, for larger values of P0, initial corrugations
cross the nascent, thin mushy layer and are thus indistinguishable from chimneys. The curves describing mushy layer height
for cases of early chimney onset, shown in Fig. 7, are monotonically increasing with time (small oscillations are a known
artifact of the Enthalpy Method related to finite jumps of the eutectic boundary across grid cells [2]). There are several curves
in Fig. 7, however, which are not monotonically increasing. In the simulations corresponding to these curves, the mushy
layer grows for at least 10 min before corrugations extend downwards into the mush to become chimneys. This late onset
Fig. 6. Four permeability maps from a simulation of directional solidification of aqueous NH4Cl. The gray-scale corresponds to the base-10 logarithm of
permeability in m2. For this simulation, permeability was calculated using the Kozeny–Carmen relation (13) with P0 ¼ 10�12. Dimensional parameters are
as given in Table 2. The grid spacing is 1/2 mm in both directions. An assigned CFL number of 1.5 for this simulation yielded time-steps of �1 s of model
time early in the simulation before the onset of vigorous convection, and �0.1 s late in the simulation.
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of chimney formation corresponds to a decrease in mushy layer thickness that slows with time and is followed by a second
period of mushy layer growth.

Simulations that do not produce chimneys reach a steady state mushy layer height. For a given computational effort, they
traverse a greater period of simulated time because their weak convection allows longer time-steps. Simulations with chim-
neys, on the other hand, have strong convection and hence smaller time-steps. For the same computational effort, they tra-
verse smaller simulated times, as is evident in Fig. 7. Although they do not, in general, reach a steady-state mushy layer
height over this time interval, they do achieve sufficiently small rates of growth that the number and spacing of chimneys
is in equilibrium with the height. In simulations with monotonically increasing mushy layer thickness, the number of chim-
neys decreases monotonically.

Fig. 8 shows the ratio of chimney spacing to mushy layer height plotted against the value of P0 from simulations. The data
were taken from the last time-step of each simulation that produced chimneys and hence represents its most mature state.
Simulations at different Hele-Shaw cell translation rates V show no apparent difference in chimney spacing to mushy layer
height ratio. This is not surprising given that both spacing and height are expected to vary with the thermal length-scale, j=V
[47]. For both permeability laws, at smaller P0 the chimney spacing is approximately equal to twice the mushy layer height,
consistent with predictions from linear stability analysis [47]. Such simulations have Rayleigh numbers that are only slightly
above the critical Rayleigh number for the onset of convection in the mush. The Rayleigh number increases with P0, and
simulations summarized in Fig. 8 show that this leads to closer spacing of chimneys at a given mushy layer height.

Another interesting feature discernible in Fig. 8 is the difference between trends for the two permeability laws. Chimney
convection under Kozeny–Carmen occurs at a minimum value of P0 that is about four orders of magnitude smaller than the
minimum for Logarithmic permeability. However, the difference in permeability between these two laws for a fixed value of
P0 and a porosity v ¼ 0:9, representative of the bottom of the mushy layer, is only about 100 (see Fig. 4). This suggests that
chimney formation is more sensitive to the permeability at the top of the mushy layer, even though chimneys penetrate to
the base of the mushy layer. Such behavior is to be expected if the boundary layer mode of instability is responsible for ini-
tiating the process of chimney formation.

4.2. The mushy layer mode

The simulations described in the previous section use parameters that are constrained, as much as possible, by the phys-
ical properties of aqueous ammonium chloride and by the properties of an experimental apparatus in use at the University of
Cambridge [33]. In these simulations, the boundary layer mode is always first to go unstable and chimneys form by growth
of perturbations to the mush–liquid interface. By changing parameter values, it is possible to suppress the boundary layer
mode of convection so that the system goes unstable by the mushy layer mode. There is some indication that the mushy
layer mode of instability is active in fixed-chill experiments where the temperature contrast between the cold plate and
the ambient fluid is slowly increased from zero [41,42].



10−14 10−12 10−10 10−8
0

1

2

3

C
hi

m
ne

y 
sp

ac
in

g 
/ m

us
hy

 la
ye

r h
ei

gh
t

Permeability constant, Π0

Logarithmic, 3μm/sec
Logarithmic, 1μm/sec
Kozeny-Carmen, 3μm/sec
Kozeny-Carmen, 1μm/sec

Fig. 8. The ratio of chimney spacing to mushy layer height as a function of P0 for an ensemble of simulations with Ci ¼ 25 wt% NH4Cl (parameters as in
Table 2, top and bottom temperatures as in Fig. 1). Symbol shape denotes the translation rate of the Hele-Shaw cell V; symbol fill denotes the permeability
law used in the simulation, Eq. (13) or (14). Error bars show the range of chimney spacing within the simulation; they are not added to points where the
range is smaller than the size of the symbol. Simulations with zero chimneys have an infinite y-coordinate on this plot. Such results were obtained for P0

just below the smallest plotted values in each trend. See the main text for a description of trends.

9834 R.F. Katz, M.G. Worster / Journal of Computational Physics 227 (2008) 9823–9840
The boundary layer mode is driven by the presence of a mobile, buoyantly unstable compositional boundary layer at the
mush–liquid interface. It results from solidification of the mush and diffusive transport of solute downward into fresher fluid
below. Reduction of the solutal diffusivity therefore diminishes the driving force for boundary layer mode convection. This is
not sufficient, however, because the boundary layer mode can be initiated by buoyant rise of fluid from just below the mush–
liquid interface, where the solid fraction is low and the permeability is high. Full suppression can be achieved by reducing
the mobility of the fluid outside the mushy layer relative to the fluid within the mushy layer, i.e. increasing the Darcy num-
ber, Da ¼ 12P0=d2.

Fig. 9 shows the development of the mushy layer mode in a simulation with parameters modified from experimental con-
straints. In this mode of instability, the buoyancy of interstitial fluid within the mushy layer drives convection at a wave-
length that is about two times the thickness of the mushy layer [47]. Upwellings are initially broad and symmetric with
downwellings. The flow modifies the permeability via dissolution, associated with upwelling, and precipitation, associated
with downwelling. With time, upwelling flow is focused into zero-solid-fraction chimneys of decreasing width.

Fig. 10 shows material streamlines and isotherms overlayed on the permeability structure of the mush. Material stream-
lines denote the instantaneous velocity field in the laboratory reference frame, they are not fluid particle trajectories. None-
theless, they indicate the presence of a stagnation point below the chimney. The black curve in this figure is the line on which
q � rT ¼ q � rCl ¼ 0 (q ¼ U� Vk is the material flux in the laboratory reference frame), or, equivalently, the line that con-
nects points of tangency between the streamlines and isotherms. The lowest point on this curve is where flow stagnates.
When the mushy layer is in steady-state, this line marks the boundary between the chimney and the mush [37]. In
Fig. 10, however, the dashed curve encloses mush below the chimney, indicating that fluid is upwelling across isotherms
in this region, dissolving crystals of the mush and causing the chimney to extend downward. At the same time, precipitation
of mush is occurring within the walls of the chimney, narrowing its width and leading to the low permeability flanks that
appear as dark vertical bands in Fig. 10.

Note the flanges or ‘‘corona” at the mush–liquid interface where the chimney vents its plume. These are formed by the
chilling effect of diffusion of heat into the plume; solute-rich fluid surrounding the plume is cooled and precipitates crystals.
The coronas around plumes in the experiment shown in Fig. 1 are visible but small compared with those predicted by the
mushy layer mode simulation. In simulations, the size of the corona seems to correlate with the flux from the chimney. The
chimneys shown in Fig. 6 have a relatively small flux and hence do not develop substantial coronas.

5. Discussion

Above we have described a theoretical/computational approach to modeling directional solidification, thermochemical
convection and chimney formation in a Hele-Shaw cell. Using benchmark calculations, we have demonstrated the accuracy
of the code in handling thermodynamic and fluid mechanical processes. Simulations of mushy layer formation and instabil-
ity show that our code is capable of stably integrating the governing equations over hours of model time at high grid reso-
lution. The results of these simulations are qualitatively consistent with experiments and with prior theory.



Fig. 9. A time series of simulation results showing the mushy layer mode of instability. The gray-scale denotes the logarithm of the permeability and
contours represent lines of constant solute concentration in the fluid. This simulation uses Kozeny–Carmen permeability with P0 ¼ 10�11. The Darcy
number is increased by a factor of 1000 over the simulation shown in Fig. 6. Note that the mushy layer is laterally uniform for more than 20 min before the
instability occurs. Chimney width continues to decrease beyond the final image in this time series and stops when it has reached the grid spacing, which is
0.5 mm in this case.
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Irrespective of the resolution of the computational grid or the primary instability mechanism, we find that simulated
chimneys evolve to a width of one grid cell. This is unfortunate because it means that variations of flow across the chimney
are not resolved, and that spurious numerical diffusion is likely to be playing a role in the simulations. This diffusion may
artificially reduce convective vigor, however we have not shown this to be the case. In the governing equations solved here,
we have neglected viscous shear stresses within the fluid. Experiments have shown that chimney width increases with fluid
viscosity [42]. It is possible that the inclusion of shear stresses in our model would set a length-scale for the width of chim-
neys that is independent of grid spacing. This will be explored in future work.

To create a computational model of acceptable complexity and computational cost, we made two important simplifying
assumptions. First, we assumed local thermodynamic equilibrium throughout the domain in order that we could apply the
Enthalpy Method, and thus avoid the need to apply boundary conditions on internal, dynamic boundaries. Chemical kinetics
may play a role in mushy layer evolution under some conditions; this is a subject we leave for future consideration. We also
assume that the Hele-Shaw cell approximation of Darcy flow between parallel plates is valid for the directional solidification
experiments that motivated our model, such as that shown in Fig. 1. This allows for an important control on plume ascent
rates in the open fluid region of the domain, and hence a control on the minimum time-step size. Preliminary model devel-
opment using a Darcy–Brinkman approach (after Ref. [28]) indicated that buoyant plumes restrained only by viscous stresses
have large flow velocities; in simulations, this led to steps in model time of much less than one second, too small given the
computational effort needed per time-step and the targeted interval of model time.

Besides the convenience of the Hele-Shaw approximation, there is the question of whether it is consistent with direc-
tional solidification experiments. The directional solidification apparatus at Cambridge has a gap of 5 mm between the glass
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plates that form the cell, larger than the 0.8–3.5 mm gap adopted in experimental analogues of flow in aquifers [7]. In direc-
tional solidification experiments on aqueous NH4Cl, chimneys and their associated plumes do not span the entire 5 mm
width of the cell. This is evident in a close inspection of Fig. 1: the visible chimneys are those that open onto the front panel
of glass. There are others, discernible by their coronas, that open onto the back panel. The emitted plumes, likewise, do not
span the width of the cell.

Despite this discrepancy, we feel that use of the Hele-Shaw cell approximation is justified by our focus on the evolution of
the mushy layer, where the dynamics are dominantly controlled by the mush permeability. The form and ascent rate of
plumes outside the mush are of no inherent interest for this work. Our study of the mushy layer mode of instability shows
that an order of magnitude change in the Hele-Shaw gap width is needed to suppress the boundary layer mode and drasti-
cally change the system behavior. This indicates that the Darcy drag imposed by the cell width alone is not limiting the
behavior of the system in the simulations of Section 4.1.

The simulations in Section 4.1 indicate that for conditions of directional solidification experiments on NH4Cl (Fig. 1 and
Refs. [34,45]), chimneys develop as a consequence of the nonlinear evolution of corrugations on the mush–liquid interface.
These corrugations arise through the boundary layer mode of convective instability; their spacing is much smaller than the
spacing of chimneys that develop when a subset of the corrugations grow downward into the mush. This behavior is qual-
itatively the same for the two different porosity–permeability relations used in this work (there are quantitative differences
in chimney spacing, however). When the permeability of the mush is taken to be very high, the mushy layer remains thin
and it is impossible to distinguish between interface corrugations and chimneys; otherwise, chimneys are considered to be
zero-solid-fraction channels that extend through more than one third of the mushy layer’s depth. For low permeabilities,
delayed onset of chimney formation leads to growth of the mushy layer to a significant height before chimneys develop from
corrugations. This delay is reminiscent of the mushy layer mode of instability.

The mushy layer mode, however, has a very different pattern of disturbance to the porosity field. It appears, as predicted
by linear stability analysis, with a long wavelength perturbation to the liquid concentration and the porosity. Upwelling fluid
creates broad zones of zero-solid-fraction that vent buoyant plumes. With time, these broad vents narrow and extend down-
ward to become chimneys. In regions between the chimneys, descending flows cool and precipitate solids. This leads to a
decrease in convective vigor and an increase in mushy layer height and mean solid fraction.

The work described above exposes some of the basic features of numerical simulations of directional solidification. There
are, however, many questions that have not been addressed here. Three general directions for further research with numer-
ical simulations appear relevant: first, quantitative comparisons between simulations and experiments in terms of stability
criteria, mushy layer height, and the spacing of chimneys will help to assess the physical assumptions of the present model
and may help to constrain mush permeability. Secondly, exploration of the parameter space associated with linear stability
calculations will refine our understanding of the evolution of convective instabilities into nonlinear regimes. This will help to
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bridge the gap between stability analysis and steady-state theory of convection with chimneys. Finally, simulations can be
calibrated to the NaCl–water system to model the formation of a mushy layer beneath sea ice. Such models could investigate
the timing and magnitude of fluxes of cold, saline fluid off the ice and into the ‘‘ocean” below. All of these studies will have
their basis, however, in the computational approach described here.
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Appendix A. Nondimensionalization

Using scalings and nondimensional parameters defined in Table A.1, we can write down a system of four dimensionless
governing equations
Table A
Scalings

x ¼ h x
jl ¼ kl

qcp

cP ¼ cp;

S ¼ L
cp;lD

RaT ¼ a
DVH=Dt þ U � rh ¼ r � ½vþ ð1� vÞk�rh�Bðh� h1Þ; ðA:1Þ

DVH=Dt þ U � rHl ¼ Le�1r � vrHl; ðA:2Þ

r � ðU=PÞ ¼ RaT oxh� RaC oxH; ðA:3Þ

r � U ¼ 0; ðA:4Þ
for the four principle variables: enthalpy H, concentration H, and two components of the flux U. In these equations, k is the
ratio of thermal conductivities, B is a dimensionless heat transfer coefficient, Le is the Lewis number, RaT and RaC are thermal
and compositional Rayleigh numbers and ox is the partial derivative with respect to x. The dimensionless temperature is h
and we have dropped primes on all dimensionless variables in Eqs. (A.1)–(A.4) and below. Eqs. (1), (5) and (12) become
H ¼ vSþ ½vþ ð1� vÞcP�h; ðA:5Þ

H ¼ vHl þ ð1� vÞHs; ðA:6Þ

P ¼ DaþP0

Pv

� ��1

; ðA:7Þ
where S is the Stefan number, cP is the ratio of heat capacities and Da is the Darcy number.
Nondimensionalization of the Enthalpy Method equations results in equations for the liquidus and solidus
hL ¼ Hl; ðA:8Þ

hS ¼max½0;p�1
s ðHs � CÞ� ðA:9Þ
and equations for the bounding energies
HS ¼ cP hSðHÞ; ðA:10Þ

HE ¼ veS; ðA:11Þ

HL ¼ Sþ hLðHÞ; ðA:12Þ
where the porosity at the upper limit of the eutectic, ve, is given by
ve ¼ 1�H
C
: ðA:13Þ
.1
and nondimensional parameters

0 t ¼ h2

jl
t0 P ¼ P0P

0 ðU;VÞ ¼ jl
h ðU;VÞ

0

;l
k ¼ ks=kl DT ¼ TLðCiÞ � Te H ¼ qcp;lDTH

s=cp;l h ¼ T�Te
DT C ¼ ps Ce�Ce

Ci�Ce
H ¼ C�Ce

Ci�Ce

T Le ¼ jl=Dl Da ¼ 12P0

d2 B ¼ bh2
=kl

qghDTP0
jlg

RaC ¼ bqghðCi�CeÞP0
jlg



Table A.2
Dimensionless formulas for Enthalpy Method variables

(a) Mode (b) v (c) h (d) Hs (e) Hl

(1) H 6HS 0 H
cp

H N/A
(2) HS <H 6HE

H
S 0 H

ð1�vÞ 0
(3) HE <H <HL Eq. (A.14) hLðHlÞ psH�Cv

vþpsð1�vÞ
H�Cð1�vÞ
vþpsð1�vÞ

(4) H P HL 1 H� S N/A H
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Having calculated each of the bounding energies for a given H, the Enthalpy Method variables can be calculated according to
Table A.2.

When the bulk enthalpy and composition are on the liquidus (HE <H <HL), the porosity is calculated by combining
Eqs. (A.5), (A.6), (A.8) and (A.9),
vðH;HÞ ¼ �B� ðB2 � 4ACÞ1=2

2A
; ðA:14Þ
where A, B and C are given by
A ¼ Cðcp � 1Þ þ Sðps � 1Þ; ðA:15Þ

B ¼ Cð1� 2cpÞ þHð1� psÞ þHðcp � 1Þ � psS; ðA:16Þ

C ¼ ðC�HÞcp þ psH: ðA:17Þ
Appendix B. Discrete equations

As discussed in Section 2.5, we use Newton’s method to solve the nonlinear system of equations resulting from the dis-
cretization of the governing PDEs. Newton’s method requires a residual for each variable at each mesh point; these residuals
are provided by the discrete equations. In this appendix we present the discrete version of nondimensional Eqs. (A.1)–(A.4).
We begin with the conservation of mass and momentum.

For a cell in row i and column j of a staggered mesh, the residual of the conservation of mass equation (A.4) is given by
RMa
ij ¼

Uij � Ui�1j

Dx
þWij �Wij�1

Dz
: ðB:1Þ
This equation is centered at the middle of grid cell ij. The conservation of momentum equation (A.3) for cell ij, in contrast, is
centered in the corner of the cell in the direction of increasing i and j. Its residual is given by
RMo
ij ¼ RaT

hiþ1j þ hiþ1jþ1 � hl;ij � hijþ1

2Dx
� RaC

Hl;iþ1j þHl;iþ1jþ1 �Hl;ij �Hl;ijþ1

2Dx

�
ðW=PNÞiþ1j � ðW=PNÞij

Dx
�
ðU=PEÞijþ1 � ðU=PEÞij

Dz

� �
; ðB:2Þ
where U and W are components of the flux U. PNij is the permeability on the jþ edge of cell ij, hence it is calculated from the
porosities of cells ij and ijþ 1 (likewise, PEij is on the iþ edge). There are six possible ways to calculate the permeability be-
tween cells: we can use a mean porosity between two cells to calculate the permeability or we can calculate the permeabil-
ities first and then average; for either of these two choices, we can average using the arithmetic, geometric or harmonic
means. The arithmetic mean can be ruled out because it yields nonzero permeability between two cells where one has
zero-porosity. We have chosen to use the geometric mean of the permeabilities. The geometric mean equals zero when
appropriate and otherwise gives a result that is between the arithmetic mean and the harmonic mean. When the momentum
equation stencil lies partially or completely within the zero-porosity/zero-permeability region of the domain, the corre-
sponding velocity components and ratios in Eq. (B.2) are forced to equal zero.

Conservation of energy and bulk composition equations contain time derivatives and thus require discretization in time
as well as space. Below we use the notation Hn

l;ij to denote the value of the dimensionless concentration in the liquid at time
tn ¼

Pn
k¼1Dtk, where the length of each time-step Dtk varies in inverse proportion to max jUj. We use a semi-implicit discret-

ization and hence discretize terms in Eqs. (A.1) and (A.2) at ttþ1=2, e.g. Hnþ1=2
l;ij ¼ 1=2ðHnþ1

l;ij þHn
l;ijÞ. The discrete residual of con-

servation of energy is
REn
ij ¼

Hnþ1
ij �Hn

ij�

Dtn
þDAðhnþ1=2

i�2j�2Þ �DDðvnþ1=2
i�1j�1; h

nþ1=2
i�1j�1Þ þBðhnþ1=2

ij � h1Þ; ðB:3Þ
where DA and DD are the discrete advection and diffusion operators, discussed below. The Lagrangian derivative in Eq. (A.1),
which derives from the downward translation of the Hele-Shaw cell at a rate V, is discretized with a semi-Lagrangian ap-
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proach [40,39]; enthalpy at tn is not evaluated at cell ij, but rather at point ij�, where j� is, in general, not an integer. This is the
foot of the characteristic that ends at cell ij at time tnþ1. The position of the foot is given by j� ¼ jþ VDtn=Dz. The value of the
enthalpy (or bulk composition, see below) there is determined by cubic interpolation.

The discrete equation for the residual of conservation of bulk composition is
RCo
ij ¼

Hnþ1
ij �Hn

ij�

Dtn
þDAðHnþ1=2

l;i�2j�2Þ � Le�1DDðvnþ1=2
i�1j�1;H

nþ1=2
l;i�1j�1Þ; ðB:4Þ
where, again, we have used a semi-Lagrangian discretization of the Lagrangian time derivative and a semi-implicit formu-
lation of the other terms. The discrete advection operator DA is constructed using the Fromm scheme, a second-order upwind
method with a nine-point, star-shaped stencil [1,43]. The discrete diffusion operator DD is discretized using the standard
finite difference five-point stencil with porosity averaged arithmetically to calculate diffusivity at the cell edges.

Each evaluation of Eqs. (B.3) and (B.4) requires values for the temperature, porosity and liquid composition that are lo-
cally consistent with enthalpy and bulk composition. These are calculated with constitutive equations derived from the En-
thalpy Method, given in Table A.2. Upon convergence of the energy–concentration solver, enthalpy, bulk composition,
temperature, porosity and the phase compositions are all entirely self-consistent and in equilibrium as prescribed by the
phase diagram.
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